11,455 research outputs found

    A search for evidence of large body Earth impacts associated with biological crisis zones in the fossil record

    Get PDF
    The natural history of the Earth, how the present plant and animal species developed, how others completely died out, etc., was studied. The rock strata sampled and studied were at the time of deposition at sea bottom. It was found that, exactly at the stratigraphic level corresponding to the extinction, a thin clay layer was greatly enriched in the the rare element iridium. It was hypothesized that the excess irridium at the boundary came from a large steroid like object that hit the earth, and that the impact of this object threw up a dust cloud dense enough and long lasting enough to bring about the extinction of a wide variety of plants and animals, producing the unique break in in the fossil record, the cretaceous-tertiary boundary. The same iridium and platinum metals enrichement are found in a thin clay layer that corresponds with the boundary as difined by sudden radical changes in plant populations. The irridium enrichement is confirmed at other fresh water origin rites in the Raton Basin

    Astrometric Effects of Gravitational Wave Backgrounds with non-Luminal Propagation Speeds

    No full text
    A passing gravitational wave causes a deflection in the apparent astrometric positions of distant stars. The effect of the speed of the gravitational wave on this astrometric shift is discussed. A stochastic background of gravitational waves would result in a pattern of astrometric deflections which are correlated on large angular scales. These correlations are quantified and investigated for backgrounds of gravitational waves with sub- and super-luminal group velocities. The statistical properties of the correlations are depicted in two equivalent and related ways: as correlation curves and as angular power spectra. Sub-(super-)luminal gravitational wave backgrounds have the effect of enhancing (suppressing) the power in low-order angular modes. Analytical representations of the redshift-redshift and redshift-astrometry correlations are also derived. The potential for using this effect for constraining the speed of gravity is discussed

    Technology transfer - A selected bibliography

    Get PDF
    Selected bibliography on technology transfe

    Developing an embedded nursing service within a homeless shelter: Client's perspectives

    Get PDF
    This phenomenological case study of a newly developed nursing service, embedded within a homeless shelter in the South East of England, uses semi-structured to elicit experiences and perceptions of clients within the service. Participants ( = 6) were interviewed using a semi-structured approach and identified three broad themes: impact of previous healthcare experiences, benefits of embedding healthcare within the shelter, and future service development. The study illuminates the diversity and complexity of healthcare needs of homeless people, as well as offers a unique insight into the service user's perception of the service

    Sea anemone model has a single Toll-like receptor that can function in pathogen detection, NF-κB signal transduction, and development

    Full text link
    In organisms from insects to vertebrates, Toll-like receptors (TLRs) are primary pathogen detectors that activate downstream pathways, specifically those that direct expression of innate immune effector genes. TLRs also have roles in development in many species. The sea anemone Nematostella vectensis is a useful cnidarian model to study the origins of TLR signaling because its genome encodes a single TLR and homologs of many downstream signaling components, including the NF-κB pathway. We have characterized the single N. vectensis TLR (Nv-TLR) and demonstrated that it can activate canonical NF-κB signaling in human cells. Furthermore, we show that the intracellular Toll/IL-1 receptor (TIR) domain of Nv-TLR can interact with the human TLR adapter proteins MAL and MYD88. We demonstrate that the coral pathogen Vibrio coralliilyticus causes a rapidly lethal disease in N. vectensis and that heat-inactivated V. coralliilyticus and bacterial flagellin can activate a reconstituted Nv-TLR–to–NF-κB pathway in human cells. By immunostaining of anemones, we show that Nv-TLR is expressed in a subset of cnidocytes and that many of these Nv-TLR–expressing cells also express Nv-NF-κB. Additionally, the nematosome, which is a Nematostella-specific multicellular structure, expresses Nv-TLR and many innate immune pathway homologs and can engulf V. coralliilyticus. Morpholino knockdown indicates that Nv-TLR also has an essential role during early embryonic development. Our characterization of this primitive TLR and identification of a bacterial pathogen for N. vectensis reveal ancient TLR functions and provide a model for studying the molecular basis of cnidarian disease and immunity.IOS-1354935 - National Science Foundation (NSF); GRFP - National Science Foundation (NSF); GRFP - National Science Foundation (NSF); 1262934 - National Science Foundation (NSF); 2014-BSP - Arnold and Mabel Beckman Foundatio

    The Tamm-Dancoff Approximation as the boson limit of the Richardson-Gaudin equations for pairing

    Full text link
    A connection is made between the exact eigen states of the BCS Hamiltonian and the predictions made by the Tamm-Dancoff Approximation. This connection is made by means of a parametrised algebra, which gives the exact quasi-spin algebra in one limit of the parameter and the Heisenberg-Weyl algebra in the other. Using this algebra to construct the Bethe Ansatz solution of the BCS Hamiltonian, we obtain parametrised Richardson-Gaudin equations, leading to the secular equation of the Tamm-Dancoff Approximation in the bosonic limit. An example is discussed in depth.Comment: Submitted to the proceedings of the Group28 conference (Newcastle-upon-Tyne, UK). Journal of Physics: Conference Serie

    The Influence of Binary Stars on Dwarf Spheroidal Galaxy Kinematics

    Get PDF
    We have completed a Monte-Carlo simulation to estimate the effect of binary star orbits on the measured velocity dispersion in dwarf spheroidal galaxies. This paper analyses previous attempts at this calculation, and explains the simulations which were performed with mass, period and ellipticity distributions similar to that measured for the solar neighbourhood. The conclusion is that with functions such as these, the contribution of binary stars to the velocity dispersion is small. The distributions are consistent with the percentage of binaries detected by observations, although this is quite dependent on the measuring errors and on the number of years over which measurements have been taken. For binaries to be making a significant contribution to the dispersion measured in dSph galaxies, the distributions of the orbital parameters would need to be very different from those of stars in the solar neighbourhood. In particular more smaller period orbits with higher mass secondaries would be required. The shape of the velocity distribution may help to resolve this issue when more data becomes available. In general, the scenarios producing a larger apparent dispersion have a velocity distribution which deviates more clearly from Gaussian.Comment: MNRAS in press, uuencoded ps fil
    • …
    corecore